\( (F, \varepsilon) \\\)-Decision Reduct Ensemble Using Hierarchical Clustering Diversification
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
//load training and testing DNA (spieces) data sets
var train = Data.Benchmark.Factory.Dna();
var test = Data.Benchmark.Factory.DnaTest();
//set weights
var weightGen = new WeightGeneratorConstant(train,
1.0 / (double)train.NumberOfRecords);
train.SetWeights(weightGen.Weights);
//create parameters for reduct factory
var parm = new Args();
parm.SetParameter(ReductFactoryOptions.ReductType,
ReductTypes.ApproximateDecisionReduct);
parm.SetParameter(ReductFactoryOptions.FMeasure,
(FMeasure)FMeasures.MajorityWeighted);
parm.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
parm.SetParameter(ReductFactoryOptions.NumberOfReducts, 100);
parm.SetParameter(ReductFactoryOptions.ReductComparer,
ReductRuleNumberComparer.Default);
parm.SetParameter(ReductFactoryOptions.SelectTopReducts, 1);
//create weak classifier prototype
var prototype = new ReductDecisionRules();
prototype.ReductGeneratorArgs = parm;
//create ada boost ensemble
var adaBoost = new AdaBoost<ReductDecisionRules>(prototype);
adaBoost.Learn(train,
train.SelectAttributeIds(a => a.IsStandard).ToArray());
//classify test data set
var result = Classifier.Default.Classify(adaBoost, test);
//print result header & result
Console.WriteLine(ClassificationResult.TableHeader());
Console.WriteLine(result);
Written on June 28, 2017